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Abstract

Images taken from underwater vehicles suffer from the propagation properties of light in

murky water. Attenuation, scattering and the use of an artificial light source result in

near-lighting, low contrast and colour incoherence. In this thesis we explore different ways

to counter those effects with software, first with common image processing algorithms

and then with model-based methods. We will introduce a new physics-based approach

specifically designed for artificially lighted underwater scenes. This two-steps method

yields an estimation of the scene radiance and the scene albedo. Results on various testing

images will demonstrate the efficiency of the method.
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Chapter 1

Introduction

Exploration of the underwater world for scientific purposes mainly rely on unmanned

underwater vehicles. These underwater drones can be either Remotely Operated Vehi-

cles or Autonomous Underwater Vehicles and serve various purposes such as ocean floor

surveying, oceanic cables inspection or underwater mines detection.

Cameras mounted on underwater vehicles produce sequences of underwater images

of poor quality due to the behaviour of light in the aquatic environment. Unlike in clear

atmospheric photography, light suffers from attenuation and scattering between the light

source, the scene and the camera. This interaction of light with the medium results in

near-lighting effects, blur, low contrast and color incoherence.

Figure 1.1: Test card imaged in pure water and a water-milk mix simulating the effects of
underwater vision.
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Whether these images are used for real-time operation of the vehicle or posterior

analysis, eliminating those effects is crucial to reveal all the details of the scene.

Ocean floor surveying is a common application of underwater imaging in which

sequences of images are taken from above with a moving vehicle. Because of attenuation

and scattering, the scene has to be imaged from close, but the study of the floor for

marine biology, geology or archeology may necessitate to capture vast areas [2]. A global

description of the floor can be obtained by images mosaicing or recovering structure from

motion, but those operations can be done only after the effects of underwater vision have

been addressed [3] [4].

Figure 1.2: Example of ocean floor imaging with green backscatter, low contrast and
non-uniform lighting.

Furthermore, we can expect completely autonomous underwater vehicles driven

by computer vision to become mainstream in the coming years, but algorithms being

currently developed usually assume that the image provided by the camera is the direct

scene radiance, hence the need for a pre-processing that eliminates all unwanted effects

specific to underwater vision.
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1.1 Aquatic Lighting

Attenuation and scattering are both the result of the interaction of light with the various

small particles composing the medium along water. Attenuation is the absorption of

a constant proportion of incident light energy through a given volume of homogeneous

medium that results in heat. Scattering on the other hand, is the change of direction

of incident light which spacial distribution is described by a scattering function. Both

yield an exponential attenuation of light intensity in the incident direction as a function of

the distance between the light source, the scene and the camera. This makes the received

image of the scene darker and since the absorption and scattering coefficients are functions

of the wavelength the received scene image is not colour-coherent.

Scattering yields another more problematic effect: light coming from the source(s)

is scattered back to the camera, creating a haze curtain between the scene and the camera.

This additive effect is called backscatter or simply haze in atmospheric photography and

drastically diminishes the image contrast. The effects of multiple scattering are more

complex and result mainly in blur and modification of the scene illumination [5].

Moreover sunlight is quickly attenuated after a few meters depth, therefore in most

cases underwater vehicles need to carry their own artificial light source [6] [7]. This leads

to a third unwanted effect: non-uniform lighting of the scene.

To summarise, near-lighting is the result of both using the vehicle light and of

the attenuation of light with distance while low contrast is due to attenuation and back-

scattering.
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1.2 State of the Art

The problem of underwater image recovery have been extensively studied in the literature,

as well as the similar problem of haze removal in atmospheric images.

Some of theses methods require special hardware installation on the vehicle such

as timed lighting, multiple lighting sources, or rotating polarising filters [8] [1] [9]. In this

thesis we only describe software methods that can be applied to any footage taken on an

underwater vehicle with a single light source.

In 2011 the dark channel prior method was proposed for efficient haze removal of

atmospheric images [10]. The uniform illumination of the environment in daylight outdoor

photography yields a simpler image formation model so that this method cannot be applied

directly to artificially illuminated underwater images. However, the dark channel prior will

be used as the starting point in later described methods.

1.3 Proposed Methods

Most of the existing methods in the literature use the same model that is used for haze

removal in atmospheric photography [8] [9]. However that model is valid only when we

can assume a uniform illumination of the scene [5]. Therefore these methods can only be

applied to images taken in the first few tens of meters of depth where the sunlight is not

totally absorbed and an artificial lighting is not required. We will introduce a new model

that can be used for artificially illuminated scenes.

In this thesis we explore different ways to model and counter these effects in order

to recover the scene radiance and albedo. Novel methods will be proposed to counter the

effects of back-scattering, attenuation and non-uniform lighting. The efficiency as well as

the processing speed of each method will be assessed.



19

Chapter 2

Non Model-Based Restoration

First we look at classical image processing techniques that can be used to counter the

effects of underwater imaging.

2.1 White Balancing

The most obvious unwanted effect of aquatic images is the colour incoherence induced by

attenuation and scattering. Depending on the composition of the medium, they usually

yields a blue or green illumination and additive backscatter. White balancing allow to

compensate the color cast but there is not a universal white balancing algorithm. The most

commons are the white patch algorithm, the gray-world assumption and the shades of gray

that are simple and fast [11]. Color constancy algorithms try to estimate the illumination

characteristics of the scene by statistical computations on the images. Assuming the

illumination is uniform its RGB components are estimated and each color channel is

simply normalized to the illumination triplet.

2.1.1 Gray-World Assumption

In the gray-world algorithm introduced by Buchsbaum [12], we assume the average re-

flectance of the scene is gray. Therefore the illumination can by directly estimated by

averaging in each channel all the pixels intensities.
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2.1.2 White Patch

The white patch algorithm (sometimes called max-RGB) is based on the assumption made

by Land [13] that our visual system does color constancy with the brightest parts of the

view. When the scene contains a white patch, the illuminant is multiplied by one in each

channel at that location directly yielding its value. In this method, each color channel is

simply normalized by the maximum values found in the image.

2.1.3 Shades of Gray

The Minkowski p-norm is defined for p ≥ 1 as:

‖x‖p = (|x1|p + |x2|p + · · ·+ |xn|p)
1
p (2.1)

Applied to color channels for p = 1, it is equivalent to the Gray-World method with

a simple averaging and for p = ∞ it becomes the infinity norm equivalent to the White-

Patch algorithm. This generalisation introduced by Finlayson and Trezzi is empirically

used with p = 6 [14].

2.1.4 Performances

These three methods have been implemented in OpenCV and tested on two sets of images:

one obtained in a water-milk mix for testing purpose and one from real surveying image

taken with an AUV.

The processing time is shown in table 2.1. The fastest method is the white patch

algorithm since it only involves finding maximums, while the most computationally ex-

pensive is the Shades of Gray algorithm.

The results are shown in figures 2.1 and 2.2. For the test card image the algorithm

that performs best is the white patch because the image actually contains white parts.

In the case of ocean floor images there is not necessarily a white patch and as shown in

figure 2.2 the shade of gray algorithm with p = 6 performs better with more neutral tones.
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We will therefore chose this algorithm for later methods that contains a white balancing

operation.

Gray-World White Patch Shades of Gray

Test Card (1920x1285) 0.507 0.219 0.536

Ocean Floor (1600x1200) 0.370 0.125 0.375

Table 2.1: Processing time of the three white balancing methods in seconds.

(a) Original image. (b) Gray-world.

(c) White patch. (d) Shades of gray with p = 6.

Figure 2.1: White balancing results on a test card image.
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(a) Original image. (b) Gray-world.

(c) White patch. (d) Shades of gray with p = 6.

Figure 2.2: White balancing results on ocean floor image.
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2.2 Contrasting

After compensating for the color incoherence, we need to address the problem of contrast

from the additive backscatter component and the non-uniform lighting. Simple histogram

equalization is not an option here because non-uniform lighting yields a non-uniform con-

trast map. Instead we try the Contrast Limited Adaptive Histogram Equalization algo-

rithm, and the fusion method presented in [15] that have been developed specifically for

underwater images.

2.2.1 Contrast Limited Adaptive Histogram Equalization

This algorithm is similar to the local histogram equalization method: for each pixels it

equalizes the histogram of the square neighbourhood, but has a contrasting limit that

prevents over-amplification of noise [16].

2.2.2 Pyramid Fusion

This method is based on the fusion of two inputs: the white balanced version of the image

and a contrast enhanced one. It aims to correct at the same time the problems of color

coherence and contrast. The white balanced version is computed with the Shades of Gray

algorithm and the contrasted version with the CLAHE algorithm.

For each input four weight maps are computed to highlight all the features of the

image: the Laplacian contrast weight, the local contrast weight, the saliency weight and

the exposedness weight.

(a) Laplacian contrast. (b) Local contrast. (c) Saliency. (d) Exposedness.

Figure 2.3: Weight maps of the testing image.
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The Laplacian contrast weight simply yields global contrast features with a Lapla-

cian filter. The local contrast weight on the other hand is computed by the difference

of the pixel value and the Gaussian weighted average of its neighbourhood with a small

kernel (for example a 5x5 kernel). The saliency weight is an higher-level map that em-

phasises objects and is computed here with the algorithm presented in [17]. Finally, the

exposedness weight shows how well a pixel is exposed and is computed as the Gaussian

distance to the average value:

WE = exp

(
−(I − 0.5)2

2σ2

)
(2.2)

Where I is the pixel intensity and σ = 0.25 the standard deviation of the associated

Gaussian distribution.

A naive blending of the inputs and the weight maps yields undesirable halos, there-

fore a Laplacian pyramid blending is used. The inputs are decomposed into Laplacian

pyramids while the weight maps are decomposed into Gaussian pyramid. The fused pyra-

mid is obtained with:

Rl =

K∑
k=1

Gl{Wk}Ll{Ik} (2.3)

Where l is the pyramid level, L{I} is the Laplacian version of the input I and

G{W} the Gaussian version of the weight map W .

2.2.3 Performances

Again both methods have been implemented in OpenCV and tested on the same sets of

image. The two methods greatly improve the contrast, but the fusion method has a slight

advantage in both testing images. In the case of the test card, the CLAHE algorithm

yields a strong halo which is much less visible with the fusion result as shown in figure

2.4. In the case of the ocean floor, the fusion result looks a little less contrasted but more

natural that CLAHE as shown in figure 2.5.
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Altogether both methods can be used to solve the contrasting problem, however

we still observe vignetting due to the backscatter and the non-uniform lighting of the

scene. This problem will be addressed in the next chapter with model-based restoration

techniques.

The processing time of both methods is shown in table 2.2. Although the fusion

method gives better results, it is to the expense of a processing time five times higher.

CLAHE Fusion

Test Card (1920x1285) 0.360 1.821

Ocean Floor (1600x1200) 0.267 1.318

Table 2.2: Processing time of the two contrasting methods in seconds.

(a) Original Image. (b) CLAHE.

(c) Fusion.

Figure 2.4: Contrasting results on a test card image.
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(a) White balanced image. (b) CLAHE.

(c) Fusion.

Figure 2.5: Contrasting results on ocean floor image.
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Chapter 3

Model-Based Restoration

3.1 Aquatic Lighting

In any transparent medium without interface, incident light always interact with a volume

of matter in the same fashion: part of it is transmitted, some is scattered, and another

part is absorbed.

䤀渀挀椀搀攀渀琀 䰀椀最栀琀 吀爀愀渀猀洀椀琀琀攀搀䄀戀猀漀爀戀攀搀

匀挀愀琀琀攀爀攀搀

Figure 3.1: Behaviour of light in an elementary volume of material.
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The transmitted light will propagate in the same direction as the incident light,

while the scattered light will emerge in many directions and intensities that can be de-

scribed by a scattering function. For example, the Rayleigh scattering function is most

often used to describe atmospheric light scattering. Finally, the absorbed part of incident

light is converted to heat.

Transmittance T is defined as the fraction of incident electromagnetic power that

is transmitted through a given volume after absorption and scattering and is a wavelength

dependent function. For a uniform medium, the Beer Lambert law gives the transmittance

as a function of the distance travelled by light d:

T = e−cd (3.1)

The Napierian attenuation coefficient c can be broken down as c = a + b where a

and b are the scattering and absorption coefficients respectively.

While the effects of scattering and absorption are present in atmospheric vision -

otherwise the sky would always be black- their effect is most often negligible. The particles

composing the media are so small that the interaction with incident light is minimal.

However in bad weather conditions or polluted environments that contains larger particles,

scattering and absorption yields haze or fog that seriously deteriorate the image quality

in terms of contrast.

This effect is nearly always present in underwater vision as water isn’t pure and

larger floating particles are present. All formation models introduced hereafter are there-

fore of the form:

I(x) = D(x) +B(x) (3.2)

Where I is the observed intensity, D the direct component is the attenuated scene

radiance and B the backscatter component.
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3.2 Image Formation Models

If we can assume a uniform illumination of the scene and the medium, that is a light source

infinitely distant -such as the sun- the backscatter is only a function of the depth. In that

case it can be shown that the direct component D(x) = J(x)T (x) and the backscatter

B = B∞(1− T (x)) are directly related by the transmittance [5]. The received intensity I

is simply observed as:

I(x) = J(x)T (x) +B∞(1− T (x)) (3.3)

3.2.1 Dark Channel Method

Using this model, the dark channel prior is based on the assumption that in every patches

composing the image at least one channel has some pixels close to zero intensity [10]. The

dark channel is given by:

Idark(x) = min
y∈Ω(x)

(
min

c∈{r,g,b}
Ic(y)

)
(3.4)

Where Ω(x) is a square neighbourhood of x. After B∞ is estimated from the

brightest pixels, equation (3.3) is normalized in each channel by B∞:

Ic(x)

Bc
∞

= T (x)
Jc(x)

Bc
∞

+ (1− T (x)) (3.5)

Applying the dark channel to both sides yields an estimation of the transmission

map:

T (x) = 1− min
y∈Ω(x)

(
min

c∈{r,g,b}

Ic(x)

Bc
∞

)
(3.6)

The transmission can be eventually refined by soft matting or guided filtering [18],

before yielding the scene radiance by:
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J(x) =
I(x)−B∞
max(t, t0)

+Bc
∞ (3.7)

Where t0 is an arbitrary lower bound of the transmission map that avoid dividing

noisy patches by near-zero factors.

As long as the initial hypothesis of uniform illumination holds, this method and its

derivatives give pleasing results. However in the case of underwater imaging the lighting

is uniform only in the first few meters of depth before sunlight is entirely absorbed. In

most cases where an underwater vehicle is carrying its own light source, the model itself

does not hold because the backscatter component becomes a function of the depth and

the illumination along the line-of-sight . Therefore we introduce a similar model that can

take into account the non-uniform lighting.

3.2.2 Proposed Model

From the previous model we keep the same direct component D(x) = J(x)T (x) and a

linear function for the backscatter B(x) = λ(x)B∞ but with λ a free parameter:

I(x) = J(x)T (x) + λ(x)B∞ (3.8)

Unlike in the previous model where each pixel has either a more intense direct

component or backscatter depending on the value of the transmittance, what we observe

with artificially lighted scene is that the backscatter is more intense where the scene

radiance is also more intense. The exact correlation between the two component will be

given in later advanced modeling.

For now this simple model allow us to separate the direct component from the

backscatter with the idea that the backscatter is a linear function of B∞

In all cases it is better to apply the proposed methods to RAW image files. The

first reason is to bypass the non-linear response function found in most camera that leads

to physically incoherent intensity values. The second reason is that the dynamic range of
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the image is drastically diminished when suppressing the backscatter component. Using

RAW files when contrasting the radiance component will avoid over-amplification of the

noise.

3.3 Proposed Method for Non-Uniform Depth Images

3.3.1 Estimation of B∞

Inspired by the dark channel prior, we use the darkest pixels to estimate the backscatter

tint B∞. In underwater imaging the haze is present in every pixels since the camera is

surrounded by water. By selecting the 10% darkest pixels in the Euclidean distance sense,

(good results are seen between 5% and 30%), we expect mainly near-zero values of J and

therefore intensities in the form:

I(x) = λ(x)B∞ (3.9)

A simple linear regression on these darkest pixels in the RGB space yields B∞.

Since the backscatter is always blue or green, it is also possible to select the darkest

pixels of the red channel only. Both methods yields the same result.

0
0.2

0.4

0
0.2

0.4

0

0.5

RG

B

Figure 3.2: (a) Test card image (b) Scatter of all pixels in the RGB space (black), its 10%
darkest pixels (red) and the linear regression (orange) yielding B∞.
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3.3.2 Estimation of the backscatter component B(x).

To obtain the scene radiance, we need to suppress the backscatter component B(x) which

is a function of the depth and the illumination along the line-of-sight [1]. Since we assumed

a non-uniform depth of the scene, B(x) doesn’t necessarily vary smoothly so it is estimated

by finding the maximum possible value of λ for each pixel knowing that the backscatter

is additive. That is, all pixel intensities are orthogonally projected onto the line spanned

by B∞ in the RGB space.

B(x) = I(x) ·B∞ (3.10)

The scene radiance is then estimated by substracting B(x) from I(x).

Figure 3.3: (a) Projection of the image onto the line spanned by B∞. (b) Estimation of
the scene radiance.

3.3.3 Performances

Although this method is very simple, it gives acceptable results because it suppress the

backscatter in all cases. However, the result is not colour-coherent. Since objects of the

scene may contain the haze color, the backscatter is over-estimated. For example the blue

color of the haze is also removed from the white parts of the test card which becomes

yellow in the radiance estimation of figure 3.3. This method contains only two simple

operations: a linear regression over a limited number of dark pixels and an orthogonal

projection that makes it suitable for real-time processing.
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3.4 Proposed Method for Uniform Depth Images

In this section it is assumed that the images have an approximately uniform depth, often

called the planar scene assumption. Although it is a strong constraint, it is a common

assumption in the case of ocean floor surveying where the UUV images the scene from

above, with relatively small objects and a nearly constant height between the camera and

the floor.

3.4.1 Estimation of the backscatter component B(x)

B∞ is estimated as above with a linear regression over the 10% darkest pixels. Now that

we assumed a uniform depth scene, the backscatter component B(x) is only a function of

the illumination along the line-of-sight. Since illumination vary smoothly as a function of

the pixel coordinates, the backscatter also vary smoothly.

We project again the image onto the line spanned by B∞ in the RGB space and

subtract it from I(x). We compute the norm of that quantity to obtain the Euclidean

distance map of I(x) from B∞. Finally that map is thresholded to its 2% smallest values

(0.5% to 3% give good results) to obtain the position of all pixels that have the exact color

of the backscatter, and therefore are very likely to have a null direct component.

The backscatter is finally recovered by fitting a 2D-polynomial to the previously

selected pixels and subtracted to the original image to obtain the radiance.

Similar results can be achieved by guessing the subset of pixels containing only the

backscatter over the darkest pixels with a RANSAC algorithm and a cost function that

minimize the polynomial regression [1].
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(a) Original image. (b) Projection onto the line spanned by B∞.

(c) Thresholded distance map to B∞. (d) Map of λ(x) after 2D-polynomial fitting.

(e) Haze estimation B(x) (f) Radiance estimation J(x)

Figure 3.4: Steps of the proposed method.
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3.4.2 Non-uniform Lighting Compensation

Now that we obtained a good estimation of the scene radiance J(x), we want to tackle the

problem of non-uniform lighting. That is, estimate the albedo from the scene radiance.

In order to do that, we need a more detailed model of the light behaviour in the image as

in [1].

We assume an orthographic camera model with a coordinate system such that the

origin is at the camera centre and the xOy plane coincides with the camera sensor. A

single artificial point-light source illuminate the environment and is located on the same

plane and at a small offset h from the camera.

As always, the intensity measured in each pixel is the sum of the direct component

and the backscatter. However, we assume here that the backscatter component of a given

pixel is simply the sum of all scattered light within the pixel z-column (line-of-sight) coming

directly from the light source, not the light coming from the scene or other pixels column.

In other words, we ignore forward scattering and multiple scattering. Forward scattering

has been shown to be insignificant, while multiple scattering is known to produce spacial

blur [5] and we observe little to none blurring effect in testing images.



36 Chapter 3

Direct Component

䰀椀最栀琀 匀漀甀爀挀攀

䌀愀洀攀爀愀匀挀攀渀攀

䰀椀渀攀 伀昀 匀椀最栀琀

栀

Figure 3.5: Illumination and radiance of the scene object. Adapted from [1].

The Inverse Square Law coupled with the Beer Lambert law gives the illumination inten-

sity of the scene as a function of the distance between the light source and the scene. If I0

is the source intensity, d the distance between the source and the scene, the illumination

of the scene IS is given by:

IS =
I0

d2
e−cd (3.11)

An object situated at distance zo from the camera is illuminated as in (3.11) with

a travelled distance d =
√
z2
o + h2. The object radiance will then be further attenuated

by e−czo until reaching the camera. Therefore the direct component is given as:

D =
I0

h2 + z2
o

e−c(zo+
√

h2+z2o)ρ (3.12)

Where ρ is the albedo.
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Backscatter Component

䰀椀最栀琀 匀漀甀爀挀攀

䌀愀洀攀爀愀匀挀攀渀攀

栀

Figure 3.6: Illumination of an elementary volume of medium along the line-of-sight and
its backscatter. Adapted from [1].

Considering now a differential volume of depth z withing the (x, y) pixel’s column illumi-

nated as before by:

IB =
I0

h2 + z2
e−c
√
h2+z2 (3.13)

A low-order model for the scattering function is given by [8]:

β(θ) =
b

4π
(1 + g cos θ) (3.14)

The portion β(θ) of IB that reaches the sensor is again further attenuated by

e−cz. Replacing cos θ in equation (3.14) by z√
h2+z2

yields the intensity contribution of the

differential volume:

dB(z) =
bI0

4π

(
1 + g

z√
h2 + z2

)
e−c(z+

√
h2+z2)

h2 + z2
(3.15)
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As the light carried by the UUV will most certainly be directional, zk defines

the depth from which the cone of light enters the pixel’s LOS. We will assume zk is

approximately constant over all pixels. Finally, integrating equation (3.15) from zk to the

scene depth z0 yields the total backscatter component:

B =

∫ z0

zk

bI0

4π

(
1 + g

z√
h2 + z2

)
e−c(z+

√
h2+z2)

h2 + z2
dz (3.16)

Numerical simulations show that variations of the scattering functions are negligi-

ble compared to the attenuation term and that the nearest closed-form solution of B is

obtained by approximating the exponential term by e−2z.

B ≈ α
∫ z0

zk

e−2cz

h2 + z2
dz (3.17)

With alpha a multiplicative constant. Equation (3.16) and its approximation (3.17)

are shown in figure 3.7. The solution of the approximated integral is given by:

B ≈ α
[

ie−2ich

2h

(
e4ich Ei(−2c(ih+ z))− Ei(−2ich− 2cz)

)]z0
zk

(3.18)

Where Ei is the exponential integral function defined as Ei(x) =
∫∞
−x

e−t

t dt

0 100 200 300 400 500
1

2

3

4
·10−4

h

B

Backscatter

Backscatter Approx.

Figure 3.7: Backscatter and its approximation as a function of h.
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We are interested in estimating the parameters z0, zk and c to compensate the

non-uniform lighting but not the multiplicative constant α since color channels can be

normalized by their maximum value. Therefore we normalize equation (3.18) by its maxi-

mum value. The light being close to the camera, the maximum of B(x) will be within the

frame and when that happens, h = 0 and equation (3.17) becomes:

B ≈ α
∫ z0

zk

e−2cz

z2
dz (3.19)

The solution to that integral is given by:

B ≈ α
[

2cz Ei(−2cz) + e−2cz

z

]z0
zk

(3.20)

The maximum of B(x) is found numerically on the backscatter estimation and we

built a distance map h(x) to the maximum. Plotting B as a function of h as in figure 3.8a

shows that the orthographic model assumption is not verified in the 4 corners where the

pixel’s columns are larger and the backscatter augment. Therefore we plot the backscatter

as a function of h only on a horizontal line of pixels containing the maximum as in figure

3.8b. Finally the ratio of equations (3.16) and (3.20) is fitted in the least-square sense

using Matlab custom equation fitting module to estimate the parameters z0, zk and c.

0 1,000 2,000 3,000

0

0.1

0.2

h

λ

(a) Backscatter as a function of h on the whole
image.

0 500 1,000 1,500 2,000 2,500

0

0.1

0.2

h

λ

Estimated Backscatter

Fitted Backscatter

(b) Backscatter as a function of h on an hori-
zontal line of pixel and its fit.
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The albedo is finally estimated by multiplying the direct component by the inverse

of the attenuation and lighting term and each channel is normalised by its maximum value.

I0ρ = D
h2 + z2

o

e−c(zo+
√

h2+z2o)
(3.21)

(a) Original image. (b) Radiance estimation.

(c) Attenuation and lighting. (d) Albedo estimation.

Figure 3.9: Results of the non-uniform compensation on the test card image.
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3.4.3 Performances

The method allows for a complete removal of the backscatter component as shown in figure

3.12 that outperforms non-model based methods.

(a) Fusion result. (b) Proposed method albedo.

Figure 3.10: Comparison of model and non-model based result.

To the best of our knowledge, there is no existing method that uses the backscatter

estimation to compensate for the non-uniform lighting. The resulting albedo estimation

yields details that are invisible in the radiance estimation as shown in figure 3.13. Moreover

figure 3.11 shows that the albedo estimation of the test card becomes flat and therefore

respect the brightness constancy constraint necessary for later mosaicing.

The method uses a linear regression, an orthogonal projection, a 2D polynomial

fitting, a least-square custom equation fitting and various additions and multiplications.

It has been implemented in Matlab and the processing time is shown in table 3.1. Its

computational complexity makes it unsuitable for real-time processing but the processing

time could be greatly improved if implemented in OpenCV.

Radiance Estimation Albedo Estimation

Test Card (1920x1285) 11.320 0.621

Ocean Floor (1600x1200) 3.158 0.144

Table 3.1: Processing time of the two steps of the proposed method in seconds.
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(a) Red Channel Radiance.
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(b) Red Channel Albedo.
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(c) Green Channel Radiance.
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(d) Green Channel Albedo.
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(e) Blue Channel Radiance.
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(f) Blue Channel Albedo.

Figure 3.11: Scatters of intensities as functions of h before and after non-uniform lighting
compensation.



3.4 Proposed Method for Uniform Depth Images 43

(a) Original. (b) Backscatter. (c) Radiance.

Figure 3.12: Radiance estimation results on a set of testing images.
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(a) Radiance. (b) Albedo.

Figure 3.13: Albedo estimation results on a set of testing images.
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3.5 Feature Detection and Matching

Image registration and sparse pose estimation are based on feature detection and matching.

Feature extraction typically involves finding well-contrasted patches that are later tracked

or matched in another image. In the case of ocean floor surveying where the overlap

between successive image is small, matching yields better results that tracking [19]. Once

features have been extracted, they can be directly matched using a similarity measure such

as the sum of squared differences in intensities. However, a feature description step can be

added to make the feature invariant to spatial transformations or illumination changes.

The Scale-Invariant Feature Transform descriptor is widely used for object detection

and image registration because of its robustness against scale and orientation changes.

The SIFT descriptor is based on the gradient to make the feature insensitive to additive

component, and is further improved against illumination changes with a clipping and

normalization step [20]. However, our results show that in the case of underwater images

the illumination change across images is so strong that a significant part of the matches

are lost if applied to the unprocessed images.
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False positive matches can be eliminated afterwards in the registration or pose

estimation step. Here we show unfiltered matches produced by OpenCV SIFT brute force

features matcher. An example on two consecutive images from sequence A is shown in

figure 3.14. In all cases, table 3.2 shows the number of matches greatly augment with the

radiance estimation, and even further with the albedo estimation of the proposed method.

Furthermore, the number of false positives is approximately similar in the radiance and

albedo estimations in figure 3.14, but with more total matches for the albedo estimation.

Therefore the non-linear illumination compensation effectively diminishes the proportion

of false positives.

Original Radiance Albedo

Ocean Floor A 67 310 415

Ocean Floor B 264 433 658

Ocean Floor C 45 87 198

Table 3.2: Number of unfiltered SIFT feature matches.
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(a) Matching with the original images.

(b) Matching with the radiance estimations.

(c) Matching with the albedo estimations.

Figure 3.14: Unfiltered SIFT features matching with 2 consecutive images from ocean
floor A.
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3.6 Sequence of Images

As mentioned previously the proposed method is particularly adapted for ocean floor

surveying with approximately uniform scene depth. For that application, UUVs produce

sequence of images that can be mosaicied to gives a global view of the ocean floor. To

obtain a good mosaic, images must respect the brightness constancy constraint [6] that is

fullfilled by the proposed method after compensating for the non-uniform lighting.

Here we can improve the method by taking into account the added information by

the sequence of images. That is, the backscatter is estimated with the darkest pixels of all

images instead of one. This yields a more precise estimation of the backscatter constant

B∞, the backscatter regression B(x) and the lighting parameters c, z0 and zk.

We apply the method to the 3 testing sets of ocean floor images taken by an AUV

and try mosacing with the original images, the estimated radiances and albedos. In every

cases the mosaic of albedos estimations gives the most detailed view of the ocean floor.

The method shows its limitations with under-exposed or over-exposed corners where the

orthographic camera assumption becomes unrealistic. However, the vignetting effect is

negligible compared to the results of non-model base methods.

Full size results of the mosaicing are shown in appendix A.
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3.6.1 Ocean Floor A

(a) Original image from the sequence.

(b) Estimated scene radiance.

(c) Estimated scene albedo.
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(a) Direct mosaicing of the sequence. (b) Mosaicing with the estimated scene radiances.

(c) Mosaicing with the estimated scene albedos.
(d) Mosaicing and blending with the estimated
scene albedos.
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3.6.2 Ocean Floor B

(a) Original image from the sequence.

(b) Estimated scene radiance.

(c) Estimated scene albedo.
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(a) Direct mosaicing of the sequence.
(b) Mosaicing with the estimated scene radiances.

(c) Mosaicing with the estimated scene albedos. (d) Mosaicing and blending with the estimated
scene albedos.
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3.6.3 Ocean Floor C

(a) Original image from the sequence.

(b) Estimated scene radiance.

(c) Estimated scene albedo.
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(a) Direct mosaicing of the sequence. (b) Mosaicing with the estimated scene radiances.

(c) Mosaicing with the estimated scene albedos.
(d) Mosaicing and blending with the estimated
scene albedos.
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Conclusion

In this thesis we introduced a new model-based restoration technique specifically designed

for artificially illuminated underwater scenes. The results it yields outperform non-model

based restoration techniques with a complete removal of the backscatter component. The

compensation of the non-uniform lighting allow for better features detection and match-

ing performances, leading to a smooth mosaicing of ocean floor sequences, and possibly

enhancing other vision applications such as object detection.

4.1 Future Work

The method has two fixed parameters: the percentage of dark pixels used for the estimation

of B∞ and the threshold value of the distance map from I(x) to B∞. The two parameters

could be automatically estimated, the first one by finding the value that maximise the

linearity of the set in the RGB space, and the second by ensuring a uniform spacial

distribution of the selected pixels across the image.

The natural next step would be to improve the proposed method for non-uniform

depth images. Just as the present method allow for good image registration and mo-

saicing, an improved method for non-planar scene would allow for proper structure from

motion. The method can also greatly be improved in term of processing speed. Real-time

estimation of the scene albedo with GPU implementation could be the pre-processing step
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allowing for high quality simultaneous localization and mapping.

Finally, temporal coherence could be investigated with an auto-regressive estima-

tion of the backscatter parameters (B∞ and B(x)) and lighting (z0, zk and c).
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Appendix A

Full Size Mosaicing Results
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Figure A.1: Mosaicing with the estimated scene albedos of ocean floor A.
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Figure A.2: Mosaicing with the estimated scene albedos of ocean floor B.
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Figure A.3: Mosaicing with the estimated scene albedos of ocean floor C.
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